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What is Synthetic Topology?

Branch of topology, designed to export 
topological results into other fields.

Escardó, Martín. 2004. Synthetic Topology of 
Data Types and Classical Spaces. ENTCS 87.



What is Synthetic Topology?
“1. to explain what has been done in classical topology in 
conceptual terms,
2. to provide one-line, enlightening proofs of the theorems 
that constitute the core of the theory, and
3. to smoothly export topological concepts and theorems to 
unintended situations, keeping the synthetic proofs 
unmodified.”
Escardó, Martín. 2004. Synthetic Topology of Data Types and Classical Spaces. ENTCS 87.
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Classical Topology

(X, TX)
   X  - set of points,                    (e.g.  N, R, Σ)
   TX - family of open sets of X       
          closed under:                            
              finite intersection
              arbitrary union



Classical Topology

Continuous functions,   f : (X,TX) → (Y,TY)
   Maps points forward 
         f    : X → Y
   Maps open sets backwards   
         f -1 : TY → TX 
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We’ll think of Σ as semidecidable truth 
values. We’ll think of functions into Σ as 
semidecidable sets.



Sierpinski Space

There is a correspondence between
open sets of X

and
continuous functions from X to Σ.
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There is a correspondence between
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and       
continuous functions from X to Σ.

So topology is really just about continuous 
functions into Σ. Topology is about 
semidecidable sets.
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Synthetic Topology

Ingredients for (synthetic) topology:
1. Spaces Types
2. Functions Functions
3. Sierpinski Space ???

Types are spaces, and each type has a built in 
“topology”, whose open sets correspond to the 
functions from that type into Σ.
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Sierpinski Type

Σ must be sufficiently nice in order to interpret 
functions to Σ as sets of points closed under:
     finite intersection,
     arbitrary countable union.

Σ must represent semidecidable truth values.
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Sierpinski Type in NuPRL

   Σ  =  (N → B) // ~
   (f ~ g)  iff  (∀n. f n = ff) ⇔ (∀n. g n = ff) 

   ⊥ = λn. ff          (g ~ ⊥)   iff      (∀n. g n = ff)
   ⊤ = λn. tt          (g ~ ⊤)   iff  ¬¬(∃n. g n = tt)
                                    Semidecidable.
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Sierpinski Type

(∨) : Σ → Σ → Σ
f ∨ g = λx. (f x || g x)

(∧) : Σ → Σ → Σ
f ∧ g = λx. (or(i<x. f i) && or(i<x. g i))
   (can’t just do pointwise &&)
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Countable join.
cjoin : (N → Σ) → Σ
cjoin = dovetail

dovetail : (N → N → B) → (N → B)
dovetail f n = or(i < n. or(j < n. f i j))
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Sierpinski Type

Countable join.
cjoin : (N → Σ) → Σ        Requires LEMMA:
cjoin = dovetail                    X ⊆ Base 
                             X → (Y//E) ⊆ (X → Y)//E’
dovetail : (N → N → B) → (N → B)
dovetail f n = or(i < n. or(j < n. f i j))
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Synthetic Topology

An open of X is a function from X to Σ.
Let  Open(X)  be the type  X → Σ.

Given           f : X → Y
                   A : Open(Y)
We get     A∘f : Open(X)   by composition.

All functions are
    continuous.



Synthetic Topology

Intersection of opens == pointwise meet.
Union of opens          == pointwise join.
  
Therefore:
  Opens have finite intersections
               and countable unions.
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Overt Spaces

In classical topology, open sets are closed 
under arbitrary union. In synthetic topology, 
open sets are closed under overt unions.
A space X is overt iff there is a function:
        ∃X : Open(X) -> Σ
Such that  (∃X.A = ⊥)  iff   (∀x. A x = ⊥)
Countable unions iff N is overt.



Compact Spaces

We also have compact intersections.
A space X is compact iff there is a function:

∀X : Open(X) -> Σ
Such that  (∀X.A = ⊤)  iff   (∀x. A x = ⊤)
All finite sets are compact (and overt).
Compactness is dual to overtness.
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Changing Assumptions

             Σ = (N → B) // ~
 implies countable union,
 implies (N is overt).
 
Does   Σ = (X → B) // ~   imply   (X is overt)?
Yes, if    X ⊆ Base    and     X ↠ X × X.
Can we weaken this?



Subspaces

If  X ⊆ Y  then  X has a topology that is at least 
as fine as the subspace topology of Y, because
Open(Y) ⊆ Open(X).

X is an open subspace of Y iff there is a 
  A : Open(Y)   s.t.   X = { y : Y | A x = ⊤ }.



Open Subspace vs Overt Subspace

If X is an open subspace of Y,
and Y is overt,
then X is overt.
If X is an overt subspace of Y,
and Y has semidecidable equality,
then X is an open subspace of Y.



Open Subspace vs Overt Subspace

If X is an open subspace of Y,
and Y is overt,
then X is overt.
If X is an overt subspace of Y,
and Y has semidecidable equality,
then X is an open subspace of Y.

Not yet verified.
But simple proofs.
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We don’t have any continuity principle.
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can depend only on finitely many values of the 
input. But that doesn’t come for free.



Limitations

We don’t have any continuity principle.
It should be the case that functions 
     (N → B) → B
can depend only on finitely many values of the 
input. But that doesn’t come for free.
We probably can’t show (N → B) is compact.
We can’t show opens on R are “open sets”.
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Limitations

We don’t have Markov’s principle.
We can’t assume that just because
     A x ~ ⊤
then there must exist some n : N such that
     A x n = tt
This is probably incompatible with (weak) 
continuity principles.



Conclusion

We’ve taken the first steps to formalizing 
synthetic topology in NuPRL.
There is much work yet to do.
Especially: 
    Looking at Tychonoff’s theorem.
    Looking for something similar for overtness.


