Synthetic Topology in NuPRL

Fran Mota, Mark Bickford {fmota, markb}@cs.cornell.edu

What is Synthetic Topology?

Branch of topology, designed to export topological results into other fields.

Escardó, Martín. 2004. Synthetic Topology of Data Types and Classical Spaces. ENTCS 87.

What is Synthetic Topology?

- "1. to explain what has been done in classical topology in conceptual terms,
- 2. to provide one-line, enlightening proofs of the theorems that constitute the core of the theory, and
- 3. to smoothly export topological concepts and theorems to unintended situations, keeping the synthetic proofs unmodified."

Escardó, Martín. 2004. Synthetic Topology of Data Types and Classical Spaces. ENTCS 87.

Classical Topology

```
(X, T_x)
  X - set of points,
  T<sub>x</sub> - family of open sets of X
       closed under:
          finite intersection
          arbitrary union
```

Classical Topology

```
(X, T_x)
                                      (e.g. N, R, \Sigma)
  X - set of points,
  T<sub>x</sub> - family of open sets of X
       closed under:
          finite intersection
          arbitrary union
```

Classical Topology

Continuous functions, $f:(X,T_X) \rightarrow (Y,T_Y)$

Maps points forward

$$f: X \to Y$$

Maps open sets backwards

$$f^{-1}: T_Y \to T_X$$

In what follows, **Σ** plays an important role.

$$\Sigma = \{ \top, \bot \}$$

$$T_{\Sigma} = \{ \{ \}, \{ \top \}, \{ \top, \bot \} \}$$

In what follows, **Σ** plays an important role.

$$\Sigma = \{ \top, \bot \}$$

$$T_{\Sigma} = \{ \{ \}, \{ \top \}, \{ \top, \bot \} \}$$

We'll think of Σ as semidecidable truth values. We'll think of functions into Σ as semidecidable sets.

There is a correspondence between

open sets of X

and

continuous functions from X to Σ .

There is a correspondence between open sets of X

and

continuous functions from X to Σ .

So topology is really just about continuous functions into Σ . Topology is about semidecidable sets.

Ingredients for (synthetic) topology:

- 1. Spaces
- 2. Functions
- 3. Sierpinski Space

Ingredients for (synthetic) topology:

1. Spaces

Types

- 2. Functions
- 3. Sierpinski Space

Ingredients for (synthetic) topology:

1. Spaces

Types

2. Functions

Functions

3. Sierpinski Space

Ingredients for (synthetic) topology:

1. Spaces Types

2. Functions Functions

3. Sierpinski Space ???

Ingredients for (synthetic) topology:

1. Spaces Types

2. Functions Functions

3. Sierpinski Space ????

Types are spaces, and each type has a built in "topology", whose open sets correspond to the functions from that type into Σ .

Σ must be sufficiently nice in order to interpret functions to Σ as sets of points closed under: finite intersection, arbitrary union.

Σ must be sufficiently nice in order to interpret functions to Σ as sets of points closed under: finite intersection, arbitrary countable union.

Σ must be sufficiently nice in order to interpret functions to Σ as sets of points closed under: finite intersection, arbitrary countable union.

Σ must represent semidecidable truth values.

$$\Sigma = (N \rightarrow B) // \sim$$

(f ~ g) iff (\forall n. f n = ff) \Leftrightarrow (\forall n. g n = ff)

$$\Sigma = (N \rightarrow B) // \sim$$

(f ~ g) iff (\forall n. f n = ff) \Leftrightarrow (\forall n. g n = ff)

$$\perp = \lambda n.$$
 ff

$$\top = \lambda n. tt$$

$$\Sigma = (N \rightarrow B) // \sim$$
 $(f \sim g) \text{ iff } (\nabla n. f n = ff) \Leftrightarrow (\nabla n. g n = ff)$

$$\bot = \lambda n. ff \qquad (g \sim \bot) \text{ iff } (\nabla n. g n = ff)$$

$$\top = \lambda n. ft$$

$$\Sigma = (N \rightarrow B) // \sim$$
 $(f \sim g) \text{ iff } (\forall n. f n = ff) \Leftrightarrow (\forall n. g n = ff)$
 $\bot = \lambda n. ff \qquad (g \sim \bot) \text{ iff } (\forall n. g n = ff)$
 $T = \lambda n. ff \qquad (g \sim T) \text{ iff } \neg \neg (\exists n. g n = ff)$

$$\Sigma = (N \rightarrow B) // \sim$$
 $(f \sim g) \text{ iff } (\forall n. f n = ff) \Leftrightarrow (\forall n. g n = ff)$
 $\bot = \lambda n. ff \qquad (g \sim \bot) \text{ iff } (\forall n. g n = ff)$
 $\top = \lambda n. tt \qquad (g \sim \top) \text{ iff } \neg \neg (\exists n. g n = tt)$

Semidecidable.

$$(\vee): \Sigma \to \Sigma \to \Sigma$$

$$(\land): \Sigma \to \Sigma \to \Sigma$$

$$(\lor): \Sigma \to \Sigma \to \Sigma$$

f \lor g = λx . (f x || g x)

$$(\land): \Sigma \to \Sigma \to \Sigma$$

$$(\lor): \Sigma \to \Sigma \to \Sigma$$

f \lor g = λx . (f x || g x)

$$(\land): \Sigma \to \Sigma \to \Sigma$$

f \land g = λx . (or(i

$$(\lor): \Sigma \to \Sigma \to \Sigma$$

$$f \lor g = \lambda x. (f x || g x)$$

$$(\land): \Sigma \to \Sigma \to \Sigma$$

$$f \land g = \lambda x. (or(i < x. f i) && or(i < x. g i))$$

$$(can't just do pointwise &&)$$

Countable join.

cjoin : $(N \rightarrow \Sigma) \rightarrow \Sigma$

Countable join.

cjoin : $(N \rightarrow \Sigma) \rightarrow \Sigma$

cjoin = dovetail

Countable join.

cjoin :
$$(N \rightarrow \Sigma) \rightarrow \Sigma$$

cjoin = dovetail

dovetail :
$$(\mathbf{N} \to \mathbf{N} \to \mathbf{B}) \to (\mathbf{N} \to \mathbf{B})$$

dovetail f n = or(i < n. or(j < n. f i j))

Countable join.

cjoin :
$$(\mathbf{N} \to \mathbf{\Sigma}) \to \mathbf{\Sigma}$$
 Requires LEMMA: cjoin = dovetail $X \subseteq Base$ $X \to (Y//E) \subseteq (X \to Y)//E'$ dovetail : $(\mathbf{N} \to \mathbf{N} \to \mathbf{B}) \to (\mathbf{N} \to \mathbf{B})$ dovetail f n = or(i < n. or(j < n. f i j))

An **open** of X is a function from X to Σ . Let Open(X) be the type $X \to \Sigma$.

An **open** of X is a function from X to Σ .

Let Open(X) be the type $X \rightarrow \Sigma$.

Given $f: X \rightarrow Y$

 $A:Y\to \Sigma$

An **open** of X is a function from X to Σ .

Let Open(X) be the type $X \rightarrow \Sigma$.

Given $f: X \rightarrow Y$

 $A:Y\to \Sigma$

We get $A \circ f : X \to \Sigma$ by composition.

An **open** of X is a function from X to Σ .

Let Open(X) be the type $X \rightarrow \Sigma$.

Given $f: X \rightarrow Y$

A: Open(Y)

We get Aof: Open(X) by composition.

An **open** of X is a function from X to Σ .

Let Open(X) be the type $X \rightarrow \Sigma$.

Given $f: X \rightarrow Y$

A: Open(Y)

All functions are continuous.

We get $A \circ f : Open(X)$ by composition.

Synthetic Topology

```
Intersection of opens == pointwise meet.
Union of opens == pointwise join.
```

Therefore:

Opens have finite intersections and countable unions.

Overt Spaces

In classical topology, open sets are closed under arbitrary union. In synthetic topology, open sets are closed under **overt unions**.

Overt Spaces

In classical topology, open sets are closed under arbitrary union. In synthetic topology, open sets are closed under **overt unions**.

A space X is **overt** iff there is a function:

$$\exists X : Open(X) \rightarrow \Sigma$$

Such that
$$(\exists X.A = \bot)$$
 iff $(\forall x. A x = \bot)$

Overt Spaces

In classical topology, open sets are closed under arbitrary union. In synthetic topology, open sets are closed under **overt unions**.

A space X is **overt** iff there is a function:

$$\exists X : Open(X) \rightarrow \Sigma$$

Such that $(\exists X.A = \bot)$ iff $(\forall x. A x = \bot)$ Countable unions iff **N** is overt.

Compact Spaces

We also have compact intersections.

A space X is **compact** iff there is a function:

$$\forall X : Open(X) \rightarrow \Sigma$$

Such that $(\forall X.A = \top)$ iff $(\forall x. A x = \top)$

All finite sets are compact (and overt).

Compactness is dual to overtness.

$$\Sigma = (N \rightarrow B) // \sim$$

implies countable union, implies (**N** is overt).

$$\Sigma = (N \rightarrow B) // \sim$$
 implies countable union, implies (N is overt).

Does $\Sigma = (X \rightarrow B) // \sim \text{imply } (X \text{ is overt})?$

$$\Sigma = (N \rightarrow B) // \sim$$
 implies countable union, implies (N is overt).

Does $\Sigma = (X \rightarrow B) // \sim \text{imply } (X \text{ is overt})?$ Yes, if $X \subseteq Base$ and $X \twoheadrightarrow X \times X$.

$$\Sigma = (N \rightarrow B) // \sim$$
 implies countable union, implies (N is overt).

Does $\Sigma = (X \rightarrow B) // \sim \text{imply } (X \text{ is overt})?$ Yes, if $X \subseteq B$ as and $X \twoheadrightarrow X \times X$.

Can we weaken this?

Subspaces

If $X \subseteq Y$ then X has a topology that is at least as fine as the subspace topology of Y, because $Open(Y) \subseteq Open(X)$.

X is an **open subspace** of Y iff there is a A: Open(Y) s.t. $X = \{ y : Y \mid A : x = \top \}$.

Open Subspace vs Overt Subspace

If X is an open subspace of Y, and Y is overt, then X is overt. If X is an overt subspace of Y, and Y has semidecidable equality, then X is an open subspace of Y.

Open Subspace vs Overt Subspace

If X is an open subspace of Y, and Y is overt, then X is overt.

Not yet verified. But simple proofs.

If X is an overt subspace of Y, and Y has semidecidable equality, then X is an open subspace of Y.

We don't have any continuity principle.

It should be the case that functions

$$(N \rightarrow B) \rightarrow B$$

can depend only on finitely many values of the input. But that doesn't come for free.

We don't have any continuity principle.

It should be the case that functions

$$(N \rightarrow B) \rightarrow B$$

can depend only on finitely many values of the input. But that doesn't come for free.

We probably can't show $(N \rightarrow B)$ is compact.

We can't show opens on **R** are "open sets".

We don't have **Markov's principle**.

We can't assume that just because

then there must exist some n: N such that

$$A \times n = tt$$

We don't have Markov's principle.

We can't assume that just because

A x ~ ⊤

then there must exist some n: N such that

 $A \times n = tt$

This is probably incompatible with (weak) continuity principles.

Conclusion

We've taken the first steps to formalizing synthetic topology in NuPRL.

There is much work yet to do.

Especially:

Looking at Tychonoff's theorem.

Looking for something similar for overtness.